Image Retrieval Based on Wavelet Transform and Neural Network Classification
نویسندگان
چکیده
The problem of retrieving images from a database is considered. In particular, we retrieve images belonging to one of the following six categories: 1) commercial planes in land, 2) commercial planes in air, 3) war planes in land, 4) war planes in air, 5) small aircraft in land, and 6) small aircraft in the air. During training, a wavelet-based description of each image is first calculated using Daubechies 4-wavelet transformation. The resulting coefficients are used to train a neural network (NN). During classification, test images are treated by the already trained NN. Three different ways to obtain the coefficients of the Daubechies transform were proposed and tested: from the entire image color channels, from the histogram of the biggest circular window inside the image color channels, and from the histograms of the square sub-images in the image color channels of the original image. 120 images were used for training and 240 for testing. The best efficiency of 88% was obtained with the third method.
منابع مشابه
A Radon-based Convolutional Neural Network for Medical Image Retrieval
Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...
متن کاملAccurate Fault Classification of Transmission Line Using Wavelet Transform and Probabilistic Neural Network
Fault classification in distance protection of transmission lines, with considering the wide variation in the fault operating conditions, has been very challenging task. This paper presents a probabilistic neural network (PNN) and new feature selection technique for fault classification in transmission lines. Initially, wavelet transform is used for feature extraction from half cycle of post-fa...
متن کاملShort term electric load prediction based on deep neural network and wavelet transform and input selection
Electricity demand forecasting is one of the most important factors in the planning, design, and operation of competitive electrical systems. However, most of the load forecasting methods are not accurate. Therefore, in order to increase the accuracy of the short-term electrical load forecast, this paper proposes a hybrid method for predicting electric load based on a deep neural network with a...
متن کاملAN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS
In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...
متن کاملA Review of Image Enhancement Technique Based on Wavelet Threshold and Neural Network
Image enhancement plays an important role in computer vision. The degraded image, blurred image and noised image effect the medical diagnosis of image data, satellite image for information retrieval. Various authors and researcher propose a method of image enhancement such as histogram equalization, multi-point histogram equalisation and some method based on neural network and wavelet threshold...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computación y Sistemas
دوره 11 شماره
صفحات -
تاریخ انتشار 2007